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Microwave Phase Shift Using Ferrite-Filled
Waveguide Below Cutoff

Charles R. Boyd, Jr.,Fellow, IEEE

Abstract—Unlike conventional waveguides, lossless ferrite-filled
guides may exhibit a complex propagation factor below cutoff
of the dominant TE mode when a transverse magnetic bias
field is applied. In that case, the field in a very long waveguide
has the character of a traveling wave whose amplitude decays
exponentially with distance from the driven end. The wavelength
and the magnitude of the applied bias field are inversely related,
and at zero field as the gyromagnetic effects vanish in the ferrite
the wavelength becomes infinite. For a bias field of one polarity,
the traveling wave will be a forward wave, and for the opposite
polarity it will be a backward wave. This peculiar behavior allows
phase shift to be produced in a bandpass filter-like structure in
which small cross-section below-cutoff ferrite waveguide sections
alternate with sections of high dielectric constant material.

Index Terms—Equivalent circuits, ferrite loaded waveguides,
microwave magnetic materials/devices, microwave phase shifters,
nonreciprocal media, waveguide theory.

I. INTRODUCTION

SOME years ago, the author presented an analysis of
differential phase for the dominant TE mode in completely

filled circular ferrite waveguide with transverse four-pole
magnetic bias [1]. In [1], it was noted that the amount of
differential phase did not depend on the dielectric constant of
the ferrite material. What was not commented upon, but is
obvious from inspection of the equations, is that the amount
of differential phase also does not depend upon whether
the frequency is above or below the dominant TE mode
cutoff frequency. This analysis was based on a simplified
transmission-line model for the lossless nonreciprocal ferrite-
loaded waveguide, which was eventually also published [2].

More recently, the search for ways to reduce the size
of rotary-field ferrite phase shifters led to configurations in
which sections of ferrite waveguide alternate with sections
of nonmagnetic ceramic material of much higher dielectric
constant [3]. The cross-sectional dimensions of this filter-like
structure may then be reduced to a fraction of the diameter
needed to propagate in a uniform ferrite rod. In carrying out
this development it was assumed and verified experimentally
that the differential phase calculated using [1] was valid, even
though the ferrite waveguide sections could be below cutoff
at the operating frequency.

Such behavior implies that waves of bias-field-adjustable
wavelength exist in the cutoff ferrite waveguide, a condition
that sharply contrasts with the case of an ordinary lossless
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waveguide below cutoff. In that case, the propagation factor
is pure real, indicating that the incident and reflected fields
have constant phase and decay exponentially in the guide.
However, the total field may exhibit a phase difference across
a lossless section of ordinary cutoff waveguide because of the
end conditions.

This paper examines the solutions for propagation factor in
a lossless ferrite waveguide biased with a transverse-magnetic
field and operated at a frequency below cutoff of the dominant
TE mode. The analysis is based on the approach of [2]. The
peculiar characteristics observed above turn out to be predicted
(but strange) results of the analysis.

II. A NALYTICAL MODEL

For time-harmonic electromagnetic fields in uniform cylin-
drical waveguides, it is customary to separate the transverse
distribution of the fields from the variation along the axis of
the guide. Using the notation of Harrington [4], normalized
transverse-field vector mode functions and
may be defined, with the normalization such that the squared
magnitudes of these functions integrate to unity over the
transverse plane. All amplitude factors are then expressed in a
-dependent mode “voltage” and mode “current” ,

and the transverse fields and are given by

(1)

Determining the transverse-field distribution then involves
the solution of a two-dimensional (2-D) Helmholtz-equation
boundary-value problem, while the longitudinal variations of
the scalar amplitudes and behave according to the ele-
mentary transmission-line equations. In cases where a detailed
knowledge of the transverse-field distribution is not required,
it is sometimes possible to replace the actual waveguide-field
problem by an equivalent transmission-line problem using dis-
tributed lumped-element parameters. Proper implementation
of this approach easily yields the propagation factor for the
waveguide.

As an example, consider the familiar transmission-line rep-
resentation for the dominant mode in a uniform ho-
mogeneously filled ordinary rectangular waveguide, shown in
Fig. 1. When the distributed series inductance and parallel
shuntLC elements are defined as shown, the propagation factor
readily computes to

(2)
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Fig. 1. Rectangular waveguide and transmission-line equivalent model for
TE10 mode.

where is the free-space propagation factor in
the medium filling the waveguide, and is the
cutoff frequency of the mode. Note that the series and shunt
inductances can be combined into a diagonal matrixas
follows:

(3)

Here is the cutoff wavenumber for the rectangular
waveguide dominant mode. With the inductances combined in
this form, it is easy to generalize the transmission-line model
to guides with other relationships for , and to include a
distributed gyrator that couples the series and shunt mem-
bers. The extended model is shown in Fig. 2. Nonreciprocal
coupling between the series and shunt inductances is the
network equivalent of similar coupling between the transverse
and longitudinal magnetic fields of the waveguide TE mode.
Following [2], the inductance matrix for the coupled case
becomes

(4)

where the coupling factor depends on the extentto which
the geometry and bias field configuration favors nonreciprocal
effects, as well as on the permeability tensor element values
produced in the ferrite by the transverse magnetic bias field,
i.e.,

(5)

A rationale for the parallel connection of distributed inductor
and gyrator elements in the equivalent circuit has been previ-
ously presented [5]. Essentially, thefactor of the inductance

is implicitly dependent on the permeability tensor of
the magnetized ferrite. For a guide completely filled with
uniformly magnetized ferrite and no gyrator coupling,will
be replaced by , given by

(6)

Fig. 2. Extended transmission-line equivalent model incorporating a dis-
tributed gyrator.

With parallel gyrator coupling, the determinant of the
inverse of the matrix appears as a denominator multiplying

, so that for the case being considered, the net result is an
equivalent factor for of the form

(7)

and for varying from zero to unity the value for
transitions smoothly from to the diagonal element of the
permeability tensor. This is an important behavior for Faraday
rotators, although for the single-mode guide of interest here,
the net effect is a slight shift in the guide cutoff frequency.

The propagation factor for the extended transmission-line
model may now be determined by assuming solutions for the
voltage and current quantities that vary as and finding
the roots of the characteristic equation

(8)

Defining the initial infinite-medium propagation factor
as , (8) can be written in the following form:

(9)

Evidently, (9) reduces to the ordinary waveguide case of (2)
when the nonreciprocal couplingvanishes. The square-root
term of (9) expresses the ordinary bidirectional waveguide
propagation, which has a second-order symmetric modification
of cutoff frequency because of the nonreciprocal coupling. In
most practical cases of interest, this shift should be small. The
first term gives the main effect of the nonreciprocal coupling,
which is independent of the direction of propagation. When
the frequency is far above cutoff, this term will numerically
add to the propagation factor in one direction of propagation
and subtract from it in the other direction. Since the sign of
changes with the direction of the magnetic bias field, the net
propagation factor will move up and down antireciprocally
from the ordinary waveguide value as the magnetic bias field
is varied from its maximum negative to maximum positive
value.

The characteristic impedances associated with the propaga-
tion factors turn out to be numerically equal, and are given
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by [2]

(10)

III. CONDITIONS BELOW CUTOFF

Cutoff occurs when the term under the radical in (9) van-
ishes. For frequencies below the cutoff value, (9) is properly
rewritten as

(11)

and by defining

(12)

the propagation factor takes on the form of an attenuated wave.
That is, for a waveguide driven at one end and extending to
infinite , the field quantities will vary along the guide as

(13)

with the two choices of sign of corresponding with the
two cases in which the field value for an infinitely long
guide vanishes at either positive or negative infinity. The
nonreciprocal coupling still produces a traveling wave (now
attenuated) that moves in a direction determined only by the
direction of the magnetic bias field. For one bias field direction
the waves will travel away from the driven end, and for the
other bias-field direction the waves will travel toward the
driven end. The characteristic impedances of the two roots
will both be purely imaginary, and again numerically equal:

(14)

As in a guide above cutoff, the characteristic impedance ex-
presses the relationship between the normal-mode line voltage
and current. The imaginary value of characteristic impedance
for the below-cutoff case simply expresses the fact that the
normal-mode voltage and current have a specific amplitude
ratio, but are in time quadrature. Because the direction of the
current flow is opposite between the mode attenuating in the
positive -direction and the mode attenuating in the negative
-direction, the quadrature relationship will be reversed for

one mode relative to the other. These conditions are analo-
gous to the propagating case and permit the voltage–current
relationship to be satisfied for arbitrary end conditions in a
guide of finite length.

IV. END CONDITIONS FOR A WAVEGUIDE BELOW CUTOFF

Consider now the case of Fig. 3, in which a short length
of cutoff ferrite waveguide is terminated in a resistive load.
Solutions of the transmission-line equations for this case give

Fig. 3. Model for short ferrite waveguide below cutoff.

the following for and :

(15)
Here stands for the imaginary part ofin (11). Note that the
power flow in the cutoff guide meets the necessary criterion,
i.e.,

(16)

Clearly, the expressions above involve both normal modes,
with fields decaying in positive and negative, respectively.
For a better insight, it is useful to think of the positive

decaying mode as the incident field and the negative
decaying mode as the reflected field, much as the above-cutoff
case considers end conditions in terms of incident and reflected
traveling waves. Then the reflected and incident fields can be
related through a load-dependent reflection coefficient. Fig. 4
shows the combination of incident and reflected field phasors
that will exist at the end of a long cutoff section terminated in
a real load whose resistance is equal to the magnitude of the
characteristic impedance of the cutoff guide. For this case, the
phase of the voltage across the load differs from the phase of
the incident field by 45. For other values of load resistance
or for shorter sections of cutoff guide, the phase will generally
differ from 45 , but will be in the range of 0to 90 relative
to the phase of the incident field.

Note that the magnitudes of the incident and reflected fields
are equal at the termination, i.e., the reflection coefficient has
a magnitude of unity. This is a general condition that applies
whenever a cutoff guide terminates into a pure real load, as
can be seen by forming the following squared magnitude of
the reflection coefficient:

(17)

Evidently a duality of sorts exists between the cutoff guide and
the propagating guide, since terminating a guide with real
into a pure reactance also yields unity magnitude of reflection
coefficient. To achieve zero reflected field, a cutoff guide may
be terminated in a pure reactance equal to the characteristic
impedance of the guide. Because it is possible to terminate
the cutoff guide in a reactance of the opposite sign from the
characteristic impedance, the reflected field may be greater
than the incident field. In fact, terminating a cutoff guide in
a lossless system into the complex conjugate reactance of the
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Fig. 4. Incident and reflected field conditions for termination in a real load
of R = jZ0j.

Fig. 5. Smith chart for reflections at the end of a cutoff guide.

characteristic impedance causes a singularity in the reflection
coefficient, i.e., the entire structure resonates with infinite.
Obviously the inherent losses in a practical structure will limit
the ratio between magnitudes of the incident and reflected
fields to a finite value.

The familiar Smith chart presents a useful mapping relation-
ship between the normalized load of a guide with realand

Fig. 6. Field amplitude versus distance in a typical periodic structure.

the resulting reflection coefficient. An analogous presentation
can be made for the case of a terminated below-cutoff guide,
as shown in Fig. 5. For a cutoff waveguide, the right half of
the impedance (or admittance) plane maps into two half-Smith
charts, one based on as the distance from , the
other based on as the distance from . The
unit half-circles of each chart represent the same conditions of
termination in positive real-load impedance.

V. PERIODICALLY LOADED GUIDE

Next, consider a lossless filter-like structure that is com-
prised of short lengths of cutoff ferrite waveguide alternat-
ing with generally different short lengths of guide filled with
a material of much higher dielectric constant. If the frequency
and physical parameters are chosen such that the composite
structure is near the center of a passband, and ifis taken
as the load at the end of a terminating ferrite guide half-
section of length , then the impedance level at the midpoint
of each ferrite section of length will also be equal to .
Inspection of (15) for this case reveals that the magnitudes of
the voltage and current will be symmetric inwith respect to
the midpoint for each ferrite section. Then the ferrite guide
sections will each appear to propagate a bias-field-dependent
traveling wave whose magnitude is minimum at the center
and rises at the ends. Conversely, the high-dielectric sections
(which must be above cutoff) propagate a normal wave whose
amplitude is maximum at the center of the sections and droops
symmetrically toward the ends. Fig. 6 shows a plot of the
field magnitude levels for a typical case of periodically loaded
structure.

As indicated above, the wavelength in the ferrite sections
is inversely related to the magnetic bias field level, becoming
infinite for zero bias as the gyromagnetic effects in the ferrite
vanish. For one polarity of bias field the wave will travel in
the same direction as the energy flow (i.e., a forward wave)
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Fig. 7. Unmetallized test structure showing alternating sections.

Fig. 8. Computed return loss for test structure.

and for the other polarity of bias field the wave will travel in
the opposite direction (i.e., a backward wave).

Since the magnetic bias field may be changed between pos-
itive and negative maximum values, the available phase shift

from cutoff ferrite waveguide sections of cumulative
length will be from (13) as follows:

(18)

but is the insertion phase for a plane wave propagating
through the distance in an infinite ferrite medium, which
can be defined as and used as a normalization as follows:

(19)

Equation (19) is exactly the same as the result derived for
ferrite waveguidesabovecutoff and previously published in
[1]. In [2], a perturbational method was used to calculate a
value of for the case of a rectangular waveguide
fully filled with ferrite, operating in the dominant TE mode,
and with constant magnetic bias in the positive-direction
over one half the cross section and in the negative-direction
over the other half. For a circular guide completely filled with
ferrite and biased by a transverse four-pole magnetic field, a
value of has been recommended [1] on the basis
of experimental data.

VI. EXPERIMENTAL RESULTS

A test configuration has been built using 11 alternating
sections of 800 gauss garnet material of and a
nonmagnetic ceramic material of in a circular
waveguide. The cutoff frequency of the ferrimagnetic guide
sections was approximately 3.7 GHz, and the structure was

Fig. 9. Microwave phase versus magnetic bias-field drive.

Fig. 10. Comparison of theoretical and measured frequency dependence.

optimized for a passband from 2.8 to 4.3 GHz, with the band
from 3.0 to 3.5 chosen as the target range for impedance
matching to a conventional rectangular waveguide at each
end. At 3.0 GHz the estimated maximum value foris
0.28. Fig. 7 shows a photograph of the test structure prior
to metallization, and Fig. 8 shows the computed return loss of
the terminated periodically loaded line configuration over the
optimized passband. A close-fitting ferrite yoke was placed
over the garnet–ceramic rod and the phase shift available
for a linearly polarized wave at frequency 3.3 GHz in the
structure was measured as a function of the transverse four-
pole magnetic bias field drive, producing the “hysteresis loop”
shown in Fig. 9.

Next, Fig. 10 presents a comparison of the measured differ-
ential phase for the test piece with the theoretical frequency
dependence as calculated from (19). In contrast with the earlier
model of [1], a small nonzero value ( ) of r—f
demagnetizing factor along the axis of the ferrite was assumed
in order to account for the use of disks in a periodic structure
rather than a single long rod. The differential phase variation
appears to be well behaved through the frequency region that
includes the cutoff value. Finally, the insertion loss of the
ferrite section plus crude matching transformers to WR-229
waveguide was found to be approximately 0.5 dB in the
3.7–4.0-GHz band.

VII. CONCLUSION

Phase shift is not only possible in below-cutoff ferrite
waveguides, but the phase shift per unit length actually in-
creases as the diameter of the guide is reduced. Alternating
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short sections of cutoff ferrite guide with sections of nonmag-
netic ceramic materials of high dielectric constant allows small
rotary-field phase shifters to be built retaining the superior
control and phase accuracy of that class of device. As the size
and weight of the units is decreased, the peak and average
power-handling capability will decrease, and the insertion loss
will increase. However, the increase of insertion loss is with
reference to a very low base level because the amount of
ferrite required for a rotary-field phase shifter is only enough
to produce a differential phase of 180.
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